Bayes Classification of

Addescent Self-Esteem Data

by Alyssa Curran

Overview

- * A synopsis of my research problem
- * Background information on original research paper
- * Some accepted findings on self-esteem
- * Explanation of Bayes Classification algorithm
- * An introduction to the data
 - \sim How I chose the data subset
 - \sim Pre-processing the data
- * A summary of my analysis techniques
- * Assumptions
- * Results
 - \sim Two performance measures
 - \sim Explanation of results
- * References

Research Problem:

The objective of my research was to do an analysis on a large set of data collected by a psychological researcher.

I used Bayesian Classification to evaluate whether or not a low measure of life satisfaction at age 18 and whether or not the individual had anxiety disorder at age 18 predicts whether or not the individual had low self-esteem at age 15.

Background Information of Original Research Paper

The original research paper was done by Joseph M. Boden, David M. Fergusson, and L. John Horwood, ~ Christchurch School of Medicine and Health Sciences

The paper is entitled: "Does adolescent self-esteem predict later life outcomes? A test of the causal role of self-esteem."

It studies the relationship between self-esteem and a number of later life outcomes in adulthood

The long-term study used data from a group of 1000 adults

Some Insights on Self-Esteem

- ~ Self-esteem is seen by researchers as a "form of evaluation of the self that guides future behavioral choice of action"
- ~ Links have been established between low self-esteem and a range of outcomes
- \sim Critical in determining success and failure at a range of tasks
- \sim Adolescence is critical
- \sim Self-esteem can be implied from adolescent behaviors
- \sim One of the first long-term studies
- \sim Should we guide our efforts at raising self-esteem?
- ~ It is important to look at family background, social environment, and emotional context

An Explanation of the Bayes Classification Algorithm

* Based on Bayes' rule of conditional probability: $P(A | B) = \frac{P(B | A) * P(A)}{P(B)}$

- * Usefulness depends on the independent contribution of the attributes and on the assumption that each attribute contributes equally
- * A classification is made by combining the impact of each attribute on the prediction of a particular data instance
- * It is also called *naïve* Bayes Classification because it assumes that the attributes are independent
- * To use the algorithm, training data is used to find the probabilities P(B | A) and P(A) and the probabilities used in each test data instance evaluation are used to find P(B), which gives P(A | B)

An Introduction to the Data

There were many attributes to choose from in the data. However, the algorithm requires that there be only two, and a labeling category

Two attributes:

Anxiety disorder at age 18 (categorical – 0 for no, 1 for yes)
Life Satisfaction at age 18 (numerical, ranges developed, 12-40)
Labels: Self-esteem at age 15 (Coopersmith Self-Esteem
Inventory)

Data sample:	anx1518	lifesat18	secat1
	0	13	1
	0	18	1
	0	26	1
	0	12	1
	0	22	1

List of Attributes

Outcome measures:

- * major depression during ages 15-18, 18-21, 21-25
- * anxiety disorder ages 15-18, 18-21, 21-25
- * conduct/anti-social personality disorder ages 15-18, 18-21, 21-25
- * nicotine dependence ages 15-18, 18-21, 21-25
- * alcohol dependence ages 15-18, 18-21, 21-25
- * illicit drug dependence ages 15-18, 18-21, 21-25
- * life satisfaction score age 18 (higher score = lower satisfaction)
- * suicidal ideation ages 18-21, 21-25
- * life satisfaction score age 21, 25
- * Intimate Relations score positive subscale age 21, 25
- * Intimate Relations score negative subscale age 21, 25

Predictors:

- * self-esteem score age 15
- * quintile categorical self-esteem score age 15 (1 = lowest, 5 = highest)

List of Covariates

Covariate Factors:

- * mother's age at birth of subject
- * average family living standards ages 0-10
- * highest level of maternal education
- * family socioeconomic status at birth
- * parental attachment scale score age 15
- * parental alcohol problems
- * parental history of criminal offending
- * parental history of illicit drug use
- * number of changes of parent figure to age 15
- * gender
- * attention problems scale score ages 7-9
- * conduct problems scale score ages 7-9
- * shyness/anxiety problems scale score ages 7-9
- * exposure to childhood sexual abuse to age 16
- ***** exposure to physical punishment to age 16

- * history of major depression to age 15
- * history of anxiety disorder to age 15
- * history of conduct/oppositional
- * defiant disorder to age 15
- * history of ADHD to age 15
- * history of substance abuse to age 15
- * history of suicidal ideation to age 15
- * imputed IQ score ages 8-9

15 * imputed neuroticism scale score age 14

Pre-Processing the Data

To pre-process the data, I had to identify all of the data entries that included missing values in the original data

I omitted all of the data entries that included missing data values ~ altogether, there were about 200 entries omitted leaving 935

For the algorithm, I needed a set of training data and a set of test data
~ I separated out 50 data entries to use as test data - 5%
~ that left 885 data entries to use as training data for the calculated probabilities

Also, because the algorithm requires categorical data, I developed ranges for the *life satisfaction* attribute – 6 altogether, each spanning a value of 5, so they go from a score of 10-40

$P(A | B) = \underline{P(B | A) * P(A)}$ P(B)

1) To calculate P(A): $P(C_i)$, the probability of each class occurring in the data ~count the occurrence of each class and divide by total # of instances

2) To calculate P(B|A): $P(t|C_i)$, the probability of that instance occurring given it is in a certain class

- ~calculate the probabilities of a data instance having each value from each attribute *and* being from each class create a table
- ~ for example, probability of instance having 0 for anxiety and from class 1, 0 for anxiety and from class 2, etc.

Here is the table I developed to facilitate evaluating the test data:

Probabilities							
Attribute:	Value:	Class 1	Class 2	Class 3	Class 4	Class 5	
Anxiety (18)	0	0.86096	0.77451	0.71779	0.65625	0.52047	
	1	0.13904	0.22549	0.28221	0.34375	0.47953	
Life Satisfaction (18)	(10-15]	0.18717	0.12255	0.10429	0.05625	0.03509	
	(15-20]	0.27272	0.2304	0.20245	0.21875	0.16374	
	(20-25]	0.4492	0.57843	0.57055	0.55625	0.60819	
	(25-30]	0.08556	0.06373	0.11656	0.1625	0.16374	
	(30-35]	0.00535	0.0049	0.00613	0.00625	0.01754	
	(35-40]	0	0	0	0	0.00585	

 $P(A | B) = \underline{P(B | A) * P(A)}$ P(B)

3) To calculate P(B): P(t), the probability of the data instance occurring itself

 \sim this probability is found by summing each of the P(B|A) probabilities during the evaluation of each test data instance

4) To calculate P(A | B): $P(C_i | t)$, the probability of the data instance being from each class

- ~ multiply the found probabilities $P(t | C_i)$ and $P(C_i)$ together, and divide by P(t)
- \sim the probability with the highest value will be assigned as the class

Here is an example of my calculations for a test data instance:

Data attribute values: anxiety age 18 = 0, life satisfaction age 18 = 16

 $P(t | 1) = .86096 \text{ x } .27272 = .23480 \text{ x } P(C_1) = .049613321$ $P(t | 2) = .77451 \text{ x } .23040 = .17845 \text{ x } P(C_2) = .041133570$ $P(t | 3) = .71779 \text{ x } .20245 = .14532 \text{ x } P(C_3) = .026764524$ $P(t | 4) = .65625 \text{ x } .21875 = .14355 \text{ x } P(C_4) = .025953390$ $P(t | 5) = .52047 \text{ x } .16374 = .08522 \text{ x } P(C_5) = .016466577$ Summed: P(t) = .159931382

P(1 | t) = .049613321/.159931382 = .3102 P(2 | t) = .041133580/.159931382 = .2572 P(3 | t) = .026764524/.159931382 = .1673 P(4 | t) = .025953390/.159931382 = .1623 P(5 | t) = .016466577/.159931382 = .1030highest value is P(1 | t), so this data instance is classif

* The highest value is P(1 | t), so this data instance is classified as class 1

Assumptions S

- 1) The data is accurate.
- The data is still useful after some data has been omitted due to missing values.
- 3) The data attributes (variables) are independent of each other.
- 4) The method used is sufficient to evaluate the data.
- 5) 5% of the data extracted from the dataset is sufficient to use for test data.

* I obtained a 30% accuracy rate of classification.

- * I, therefore, cannot conclude that a low measure of life satisfaction and whether or not an individual has anxiety disorder at age 18 predicts that they had low self-esteem at age 15.
- * I have provided two performance measures to illustrate my results:

Confusion Matrix:

Operating Characteristic Curve:

A Few Notes

In the original research paper, the researcher states that there are many covariates (factors that effect both self-esteem *and* later life outcomes) that can be accounted for, and therefore, that some of the data attributes have been found to be dependent — my analysis confirms this.

My analysis is different in that is was done in the opposite direction. The researcher evaluated whether or not low self-esteem at 15 predicted later life outcomes, while I evaluated whether or not certain life outcomes can predict that the individual had low self-esteem at 15.

References

Boden, Joseph M.; Fergusson, David M.; Horwood, L. John. (2008).
Does Adolescent self-esteem predict later life outcomes? A test of the causal role of self-esteem. *Development and Psychology*, 20, 319-339.

Dunham, Margaret H. (2003). *Data Mining: Introductory and Advanced Topics*. Upper Saddle River, NJ: Pearson Education, Inc.

Roiger, Richard J.; Geatz, Michael W. (2003). *Data Mining: A Tutorial-Based Primer*. Boston, MA: Pearson Education, Inc.

* The raw data was obtained directly from Joseph M. Boden.

Thank you!